Angle Proofs Reference | Properties of Equality | | Properties of Congruence | |--|---|---| | Addition Property Subtraction Property Multiplication Property Division Property Distributive Property | Substitution Property
Reflexive Property
Symmetric Property
Transitive Property | Reflexive Property Symmetric Property Transitive Property | | | Definitions | | | Definition of Congruence Unang | | | | Definition of
Angle Bisector | An angle bisector divides an angle into two equal parts. | | | Definition of
Complementary Angles | Complementary ↔ Sum is 90°. | | | Definition of
Supplementary Angles | Supplementary ↔ Sum is 180°. | | | Definition of Perpendicular 1 | Perpendicular lines form right angles. | | | Definition of
a Right Angle | A right angle = 90° | | | | Postulates | | | Angle Addition
Postulate | B C | m∠ABD + m∠DBC = ∠ABC | | LinearPairPostulate | If two angles form a linear pair, then they are supplementary. | | | line | ar pair -> | supplementary | | , | Iheorems | N . | | Vertical Angles Theorem | If two angles are ve | ertical, then they are congruent. | | Congruent
Complements
Theorem | If $\angle A$ is complementary to $\angle B$ and $\angle C$ is complementary to $\angle B$, then $\angle A \cong \angle C$ | | | Congruent
Supplements
Theorem | If $\angle A$ is supplementary to $\angle B$ and $\angle C$ is supplementary to $\angle B$, then $\angle A \cong \angle C$ | |